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Abstract

The Bayes factor is a useful summary for model selection. Calculation of this measure
involves evaluating the integrated likelihood (or prior predictive density), which can be esti-
mated from the output of MCMC and other posterior simulation methods using the harmonic
mean estimator. While this is a simulation-consistent estimator, it can have infinite vari-
ance. In this article we describe a method to stabilize the harmonic mean estimator. Under
this approach, the parameter space is reduced such that the modified estimator involves
a harmonic mean of heavier tailed densities, thus resulting in a finite variance estimator.
We discuss general conditions under which this reduction is applicable and illustrate the
proposed method through several examples.

Keywords: Bayes factor, Beta-binomial, Integrated likelihood, Poisson-Gamma distribution,
Statistical genetics, Variance reduction.
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1 Introduction

The integrated likelihood is an important quantity in model comparison — it is the key
component of the Bayes factor for example (Kass and Raftery 1995). Consider data y, a
likelihood function 7(y|€) from a model for y indexed by a parameter 6, in which both y and
f may be vector-valued, and a prior distribution 7(#). The integrated likelihood of y is then
defined as
w(y) = [ 7(ylo)n(0) do.

The integrated likelihood normalizes the product of the likelihood and the prior in forming
the posterior density 7(f|y). Furthermore, as a function of y prior to data collection, 7 (y)
is the prior predictive density.

Evaluating the integrated likelihood can present a difficult computational problem. New-
ton and Raftery (1994) showed that 7(y) can be expressed as an expectation with respect to

the posterior distribution of the parameter, thus motivating an estimate based on a Monte
Carlo sample from the posterior. By Bayes’s theorem,

1 / 7(0y) { 1 }
= d = FE Yo, 1
W) ) 7l) wl0) W
suggesting that the integrated likelihood 7(y) can be approximated by the harmonic mean
-1
X 1& 1
i) =[5 ]

t=1

(2)

based on B draws 6,62, ... 6% from the posterior distribution 7(#|y). This sample might
come out of a standard Markov chain Monte Carlo implementation, for example. Though
7rum(y) is consistent as the simulation size B increases, its precision is not guaranteed.

The simplicity of the harmonic mean estimator (2) is its main advantage over other more
specialized techniques (e.g. Chib 1995, Raftery 1996, Lewis and Raftery 1997, DiCiccio et al.
1997). It uses only within-model posterior samples and likelihood evaluations which are often
available anyway as part of posterior sampling. A major drawback of the harmonic mean
estimator is its computational instability. The estimator is consistent but may have infinite
variance (measured by Var{[m(y|0)]~'|y}) across simulations, even in simple models. When
this is the case, one consequence is that when the cumulative estimate of the harmonic mean
estimate (2) based on the first B draws from the posterior is plotted against B, the plot
has occasional very large jumps, and looks unstable. In this article we present a method
to stabilize the harmonic mean estimator. We develop general conditions under which this

method works and we demonstrate the method in several examples.



2 Stabilizing the Harmonic Mean Estimator

An overly simple but helpful example to illustrate our proposed method is the model in
which 6 = (u, 1) records the mean and precision of a single normally distributed data point

y. A conjugate prior is ¥ ~ Gamma(a/2,«/2), and

(1l1) ~ Normal(pg, 9%))

where «,ng, and po are hyperparameters (e.g., Bernardo and Smith, 1994, page 268 or
Appendix I). The integrated likelihood 7(y) is readily determined to be the ordinate of a
t density, St(y|uo,n0/(no + 1), ) in the notation of Bernardo and Smith (1994, page 122
or Appendix I). Were we to approximate 7(y) using equation (2), instead of taking the
analytically determined value, we could measure the stability of the estimator with the
variance Var{[mw(y|0)]~*|y}. This variance, in turn, is determined by the second noncentral

moment E{[7(y|0)] 2|y} which is proportional to

//W exp {%[(y — p1)* = mo(p — po)”® — a]} dipdp,

and which is infinite in this example owing to the divergence of the integral in u for each
1. The reciprocal of the light-tailed normal density forms too large an integrand to yield a
finite posterior variance, and hence the harmonic mean estimator is unstable.
An alternative estimator, supported equally by the basic equation (1), is
-1
X 1 & 1
7TSHM(:U) = [EZ ] )

& 7l ©)
which we call a stabilized harmonic mean. In (3), u is the mean component of 6" = (u?, ¥'),
and thus is a draw from the marginal posterior distribution 7(p|y). The stabilized harmonic
mean is formed not from standard likelihood values, but rather from marginal likelihoods
obtained by integrating out the precision parameter . It is straightforward to show that

this marginal likelihood has the form of a ¢ ordinate,

m(ylm) = St {ylm, (o + 1)/ + no(p — po)*], 0+ 1} .

The intuition motivating (3) is that since m(y|u) has a heavier tail than 7(y|@), averages
of reciprocal ordinates become averages of less variable quantities than in (2). Measuring

stability as above, we observe that

— )2+ mo(p — 10)2] /e }e/2H
e B R @
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is finite when o > 1 and ng > 0. This result is proved in Appendix II.

Figure 1 compares the harmonic mean 7y (y) to the stabilized harmonic mean 7spm (y)
for various parameter settings of this simple normal example. For each case, both estimates
use a common sample of B = 5,000 independent and identically distributed posterior draws
for the mean p and precision . Shown for each sample is the value of both estimators using
ever larger amounts of the sample. Figure 1 shows clearly how the infinite variance of the
harmonic mean estimator manifests itself in practice. Every so often a parameter value with
a very small likelihood is generated from the posterior, and this yields a very large value
of the reciprocal of the likelihood, which in turn greatly reduces 7um(y). Subsequently,
7ium(y) increases gradually, until another very small likelihood is encountered. Improved
performance of the stabilized harmonic mean is evident in Figure 1. The ¢-based estimator
7isam(y) converges much more rapidly than the standard estimator, and does not exhibit
the same pattern of occasional massive changes. To further validate this observation, we
recomputed both final estimators on 100 independent posterior samples of size B = 5000
(Figure 2). Relative stability of the #sum(y) is clearly indicated.

The multivariate normal model is a direct extension of the univariate normal example
discussed above. The standard estimator, obtained using equation (2), is a harmonic mean
of multivariate normal densities. This can be easily shown to be an unstable estimator of
the prior predictive density. Integrating the precision parameter leads to a heavier tailed
multivariate ¢ density, which can be used to obtain a stable estimator analogous to equation
(3).

The stabilized harmonic mean was first reported in a statistical genetics application in
which numerical stability of a t—based harmonic mean was observed (Satagopan, Yandell,
Newton, and Osborn 1996). §3 presents a detailed study of this case. Although the genet-
ical model used by these authors is rather specialized, the method to obtain a more stable
estimate is quite general: approximate 7(y) by a harmonic mean of values 7[y|h(#")] where
01,62, ...,08 form a sample from the posterior distribution 7(|y). The function h(#) must
reduce the parameter space as much as possible, while not making the calculation of the
marginal likelihood 7[y|h(6)] too difficult. In the examples we work out, h(f) is of lower
dimension than 6, typically obtained by integrating out one or several of the components.
Taking h(f) to be constant is an extreme case; 7[y|h(f)] then becomes the integrated like-
lihood 7(y). Of course, if this were computable there would be no need to calculate an
approximation, and in any case, the harmonic mean estimator would have zero variance. To

form harmonic means from reduced distributions is a general variance reduction technique.
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Figure 1: Logarithm of normal (bold line) and t-based (dotted line) harmonic mean estimates
compared with the true value (dashed line), when the data y follow a univariate normal
distribution as discussed in §1. The top row of the figure displays the harmonic mean
estimates when y = 5 and pg = 0. The second row corresponds to y = 0 and po = 5. The
bottom row gives the figures for y = 0 and pg = 0. The 3 columns columns correspond to «
values of 2, 6 and 10. The value of nq is 1.
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Figure 2: Boxplots to assess the variability of the estimated integrated likelihood. Shown
are the true integrated likelihood, and the normal and t-based harmonic mean estimators
on the logarithmic scale. The estimates are obtained from 100 Monte Carlo samples of size
5000. These estimates are shown for various configurations of parameters as in Figure 1.



Theorem 1 If h is a measurable function of 6 then

v e ) =V e}

Either variance may be infinite. If the left hand side is infinite, then the right hand side is

infinite also.

To avoid measure-theoretic considerations, we prove Theorem 1 only under the additional
condition that h(f) is a dimension-reducing transformation: i.e. 6 = (a,f), h(f) = «,
and both « and f range freely so that the prior density 7 (0) = 7(a)7(8|«) is well-defined.
See Appendix III for a proof. In certain hierarchical models, where analytical integration is
possible on one or two levels, it may be possible to identify useful reductions h(f) to facilitate
stable harmonic mean calculations.

Gelfand and Dey (1994) noted an extension of the basic identity (1) which justifies
estimating the integrated likelihood by the harmonic mean of 7 (y|0")7(6")/f(0") where, as
before, the #'’s are sampled from the posterior, but now 7(#) is the prior density and f(6)
is any (normalized) density on the parameter space. The idea is to choose f carefully so
as to minimize Monte Carlo error. We show in §4 that our proposed stabilization can be
combined with this technique for improved performance. Indeed there is some synergy in
this combination because the proposed stabilization reduces the dimension of #, thus making

it simpler to identify a useful f function.

3 Statistical Genetics

Linear models are used frequently in quantitative genetics to relate variation in a measured
trait (phenotype) to variation in underlying genes affecting the trait (genotype); Doerge,
Zeng, and Weir (1997), for example, is a useful review from a statistics perspective. We

reconsider the particular model

S
yi = p+ Y0505+ €, 1=1,--,n, (5)

j=1
used by Satagopan et al. (1996) to infer the genetic causes of variation in the time-to-
flowering phenotype in the plant species Brassica napus. In (5), the i indicates different
plants in a sample of size n = 105, the phenotypes y = (y;) are the logarithms of the
times to flowering, and the decomposition on the right-hand-side characterizes the expected

phenotype conditional on the genotype g; = (g;;) at a set of s different genetic loci. Here ¢;
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is modeled as a mean zero normally distributed disturbance with variance o2 independent
of genetic factors, p is the marginal expected phenotype and ¢ is the genetic effect of the
jth quantitative trait locus (QTL). From the particular experimental design, each genotype
gi ; takes one of two possible values, coded as {—1, 1}, with equal marginal probability.

The model (5) would be rather standard except that the genotypes g = (g;) are unob-
served; in fact, for each 7 they represent the values of a random process defined over the whole
genome and evaluated at s distinct positions A = (Aq,...,\;), the s putative QTLs. The
number of QTLs, s, is unknown, as are their positions A and their effects o = («, .. ., @s)-
Indirect information about the QTL genotypes comes through genotype data m = (m;) ob-
tained, in this example, from a panel of 10 molecular markers in the chromosomal region of
interest. The statistical problem is to infer the unknown parameters § = (u, @, \, 0%) from
marker and phenotype data (m,y), and considering missing genotypes g.

Satagopan et al. (1996) presented a Bayesian solution in which Markov chain Monte Carlo
(MCMC) was used to sample the posterior distribution of all the unknowns conditional on
s, the number of QTLs, separately for a range of values of s. To infer s, the integrated
likelihood 7(y|m, s) was approximated for each s via a harmonic mean, and this enabled

calculation of Bayes factors
BF(s1, s2) = m(y|m, s1)/7(y|m, s2). (6)

We reconsider this calculation in further detail. (Note that we can condition on marker in-
formation m because its marginal distribution 7 (m) is not dependent on any of the unknown
parameters.)

The prior for 6 factorizes into a uniform prior over ordered loci A = (Ay,...,As) within

the chromosomal region under consideration and a conjugate prior for p, o = (;), and o

m(ulo?) = Normal(uo,o?/no),
m(ajl0?) = Normal(cy j,0°/ng ), j=1,---,s

n(0?) = Inverse Gamma((/2,(/2),

where o =5, ng =1, g ; = 5, ng; = 1, for each j and ( = 8. Fixing the number of loci
s, one complete scan of the MCMC sampler updates each element of # and all the missing
genotypes in g. See Satagopan et al. (1996) for further details on the component updates. A
total of 3 chains, corresponding to s = 1,2, and3, were obtained. For a fixed s (=1, 2, or 3),

we report results below based on a chain of length 4000 x 100 complete scans, subsampled



every 100 scans, with the first 100 saved states removed as burn-in. This corresponds to an
effective independent sample size of about 3900 for estimating the genetic effect parameters.

Unknowns (6%, g*) are sampled from their posterior distribution conditional on observed
phenotypes y, marker genotypes m and the model dimension parameter s. Invoking the

standard harmonic mean argument, as in (2), we approximate 7(y|m, s) by

i) = [p3 LT @

t=1 ﬂ-(y|ma Gta gt7 S)
As in the simple normal example of §2, a problem arises with (7) because we are averaging
reciprocals of normal ordinates. To stabilize the estimator, we integrate out the variance

parameter o2:

B -1
1 > 1
B = 7 (y|m, h(6"), ¢", 8)] ’

t=1

(8)

fsum(y|m,s) = [

where h() returns all components of 6 except the variance parameter. In (8),
7(y|m, h(6), ¢*, ) is a scaled t density, St (y|u+ ' g,1,¢).

Figure 3 shows the cumulative Bayes factor estimates obtained from three chains, (s =
1,2, and 3), based on integrated likelihood estimates in either (7) and (8). Evidently the
stabilization has worked in this more complicated example; there are fewer massive changes
in the estimate. Numerically, we obtain BF(1,2) = 0.368 using (7), and BF(1,2) = 0.395
using the stabilized estimator (8). The estimates of BF(2,3) are rather more disparate:
13.15 and and 4.39, respectively. In any case we would conclude that the two locus model is
most likely a posteriori.

Figure 4 indicates the Monte Carlo sampling variability of the two estimators. The above
computations were done on 75 repeated runs. To reduce the computational burden of the
simulation, we used a value of B just half of the earlier value. The side-by-side boxplots
further confirm the success of the stabilization in the present example.

We note that other dimension-reducing transformations h(-) could be used in this exam-
ple. For example, we could sum out the genotype values g and thus average reciprocals of
finite mixtures of normals (or t’s). It may also be possible to integrate the genetic effects a.

Neither of these has been attempted here.

4 Beta—Binomial

A naturally occurring hierarchical model has observable counts y = (y;), i = 1,...,m, arising

as conditionally independent binomial random variables with numbers of trials (n;) and

8
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Figure 3: Bayes factors for the flowering time data discussed in §2. The comparison between
one locus and two loci models is shown on the top. The bottom figure corresponds to the
comparison between the two and three loci models. The bold line is the standard Bayes
factor estimate. The dotted line is the ¢-based estimate.
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Figure 4: Assessing the variability of the Bayes factor estimates for the flowering time data
using 75 repeated chains. Comparison between the one and two loci models are shown
on the top, and comparison between two and three loci models are shown below. In each
figure, variability among t-based estimates is shown in the top and that among the standard
estimates is shown in the bottom.
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success probabilities p = (p;). In turn, these (p;) are modeled as conditionally independent
beta variables with canonical hyperparameters a and b say, upon which some further prior
distribution 7 (a, b) is placed. To obtain the probability of y in this model, we must integrate
out both (p;) and the hyperparameters a and b. It is routine to sample the full parameter
set 8 = (p,a,b) from its posterior distribution (Gelman, Carlin, Stern, and Rubin 1996).
For example, an MCMC simulation might update each p; from its Beta full-conditional
distribution, and then resort, perhaps, to a random-walk proposal to update a and b.

The basic harmonic mean combines reciprocals of binomial likelihoods from the posterior
sample, and, it turns out, can be quite unstable. As before, stability is determined by the

second noncentral moment
{[7r y|0)]” 2|y //H{/ el — p)btomitu dp} 7(a, b) da db.

Unless we take an extreme prior 7(a, b) which ensures ¢ > max(y;) and b > max(n; —y;), this
integral can diverge. The resulting prior is unrealistically peaked, which is unsatisfactory,
ruling out the standard (unstabilized) harmonic mean estimator as a practical tool for the
beta-binomial model.

It is straightforward to stabilize the harmonic mean by reducing the dimension of 6 as
in previous examples. One possibility is to take h(f) = (a,b); i.e. to integrate out all the
binomial success probabilities. In this conjugate structure, we have a closed form Beta-

binomial expression for 7{y|h(#)}, namely

['(n; +1) Fla+b) T(a+y) b+ n; —y)

¥+ )0y +1)Ta+b+n;) T(a) T'(b) 9)

r{lhO)} =] 1

The harmonic mean of these beta-binomial probabilities, calculated from the (a, b)’s sampled
from their posterior, is consistent for the integrated likelihood. We may expect this to be
more stable since the beta-binomial distribution is more diffuse than the binomial, and so
the reciprocals of the probabilities may not be as extreme. The stability of this estimator is

determined by the second noncentral moment, which satisfies

E{[r(yla,0)]?ly} < /(a—i—b—l—nmax—l)mﬁ(a,b) da db,

where np., = maxn;. Stability is ensured when prior moments of a and b exist.
Data on free-throw percentages from the National Basketball Association (NBA) provide
an interesting demonstration of the harmonic mean calculations. On March 9, 1999, there

were 414 active NBA players of whom 374 had attempted at least one free throw by that
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point in the season. Among these 374 players, the numbers of attempts (n;) ranged from 1
to 205, with a mean of about 35. We model y;, the number of made free throws by player
1, to be Binomial with n; trials and unknown success probability p;. The average free throw
percentage y;/n; is about 70% in the data reported at www.yahoo.com (and available from
the authors).

We consider the problem of evaluating the integrated likelihood 7(y) under the hierar-
chical beta-binomial model given above. This would be useful when comparing this model
with other hypothesized models for these data. We place independent standard exponential
priors on a — € and b — ¢ where ¢ = 1 is a lower truncation point of the prior. MCMC
was used to simulate the posterior. The following numerical results are based on a single
chain of length 50000 x 50 complete scans, subsampled every 50 scans, and with the first
100 saved states removed as burn-in. Significant trends were not detected in the output
and time-series diagnostics indicated that little dependence remained in the saved states.
Computations were done separately on a second run and we saw no appreciable differences
(data not shown).

Natural logarithms of the product binomial likelihood and the product beta-binomial
likelihood (9) are monitored in Figures 5a and 5b. From these values we obtain the standard
harmonic mean estimate and the stabilized one. The log estimates are -820.8 and -944.2
respectively; these are quite different. The standard estimate is known to be unstable.
Indeed the variance of the sampled loglikelihood values is 143.8 while that of the sampled
log beta-binomial values is only 4.0. Variance on the log scale does not tell the whole story
because we are averaging on the anti-log scale; it is outliers (having very low likelihood) that
are particularly influential, but still variance gives some indication.

Suspecting that some additional improvements could be made, we combined the stabiliza-
tion technique with the method discussed at the end of §2, using a Gaussian approximation
to the posterior 7 (a,bly) as the density f. The estimate becomes a harmonic mean of the
values 7 (y|a, b)7(a,b)/ f(a,b), with (a, b)’s sampled from their posterior. Figure 5c¢ shows the
time series of adjusted marginal likelihoods. The main advantage of this adjustment is that
now the influence of individual sample points is greatly diminished. The estimated log inte-
grated likelihood is -952.6. A brute force grid-based numerical integration of 7 (y|a, b)7(a, b)
gave -951.4. Thus we see that the initial stabilization method worked fairly well and was

easily improved.

12
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Figure 5: The top panel, middle panel and bottom panel compare the standard harmonic
mean estimator, modified estimator, and adjusted estimator based on Gelfand and Dey
(1994), respectively, for the NBA example.
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5 Other Reductions: A Simple Poisson-Gamma Model

Sometimes useful reductions are hard to find, and the natural approach we have considered
of integrating out a parameter does not work. A simple example is when y has a Poisson
distribution with mean v\, and 7 is exponentially distributed with mean 1 and independent
of A\ a priori. The standard harmonic mean estimator of 7(y) uses samples #° = (\%,~*)
from 7(0|y), and averages the reciprocals of Poisson probabilities. Stability depends on the
second noncentral moment

E{rwo) v} « [ [ 5 emt-r(t = )n(y) drar

Note that the inner integral diverges for any A > 1, so that the standard harmonic mean is
unstable. The natural reduction would be to take h(f#) = A. Thus the marginal likelihood
7[y|h(0)] = 7(y|A) is a geometric distribution A¢/(1 + X\)®@+1. Stability here hinges upon

E{[W(yM)]‘Z\y} o /(#)y(l—i—)\)w(/\)d)\.

For small )\, the dominant term of the integrand is w(\)/\Y, and so stability of the modified

harmonic mean depends on the prior, though for a standard Gamma prior, for example,

this integral can diverge. In other words, both variances in Theorem 1 equal infinity. Thus
integrating out <y does not produce a stabilized harmonic mean estimator in this case.
Another, further reduction does work, however. Consider the case where )\, like 7, has a
prior exponential distribution with mean 1. Suppose that h(f) = 0 if A < ¢, and h(f) = A
if A > ¢, where ¢ is a small predetermined constant. Then n[y|h(8) = 0] ~ /7' /(y +
1) (better approximations are readily available if necessary), and it is easily shown that
E{r[y|h(6)] 2|y} < co. Thus, with this refinement, the modified harmonic mean estimator

is stable.

6 Discussion

In this article we have described a way to stabilize the harmonic mean estimator of the
integrated likelihood (Newton and Raftery 1994) by taking advantage of dimension-reducing
transformations on the parameter space. The proposed variance stabilizing method extends
a very simple tool into a range of widely used hierarchical statistical models. As illustrated in
§3 and §4, dimension reduction is straight forward in certain hierarchical models. Sometimes

the natural approach of integrating out a nuisance parameter does not yield a stabilized
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estimator, however , and one must search farther. We have given one example, a simple
Poisson-Gamma model, in §5 where the natural approach does not work directly, but a
slight refinement of the h(-) function does yield a stabilized estimator. The trick used there
to find this refined A function was based on the fact that the estimator is stable if and only
if E{n[y|h(0)]7%|y} < co. We wrote this expectation as an integral, identified the part of
the range of integration responsible for the integral being infinite, and effectively carried out
the integration over that small part of the space via analytic approximation, thus defining
a new h function. Dimension reduction for variance stabilization may not be an effective
method to compute normalizing constants in certain very hard problems. In the cases we
have studied, we have shown that it is possible to stabilize the harmonic mean estimator
and obtain estimates that are much more accurate, but still easy to calculate.

Gelfand and Dey (1994) derived an alternative approach to estimating the integrated
likelihood 7(y), as discussed towards the end of §2. However, their estimator can be sensitive
to the choice of the function f(-), and can also suffer from instability for the same reasons
as the standard harmonic mean estimator does. In §4 we showed that their approach can
be combined with the stabilization method proposed here for improved performance of the
harmonic mean estimator.

Another application of the proposed stabilization approach includes robust linear models
(Andrews and Mallows 1974, Carlin and Louis 1996). The robust linear model has an error
term distributed as Z/v/U, where Z and U are independently distributed as Normal(0,
precision = ¢)) and x? with v degrees of freedom, respectively. The standard harmonic mean
estimator can have infinite variance. A stabilized harmonic mean estimator can be obtained
by integrating out the denominator U (details not shown but available from the authors).

Hierarchical models which involve standard distributions may be good candidates for
the present approach. For one thing, MCMC is well understood for within-model posterior
simulation. Furthermore, the integrations required for dimension reduction may be solved
analytically. The simplicity of the resulting stabilized harmonic mean is its main advantage.

The reversible-jump MCMC(Green 1995) is a specialized algorithm for Bayesian model
selection. Satagopan and Yandell (1996) used this method to estimate the number of QTLs
(s) in the statistical genetics problem of §3 by approximating the posterior model proba-
bilities using the reversible-jump MCMC algorithm. The reversible jump MCMC algorithm
involves additional calculations beyond single-model MCMC, and the resulting algebra and
computation can be burdensome. Further, careful implementation of the algorithm includes

an appropriate choice of prior distribution for s, as this can influence rapid mixing of the
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chains (Satagopan and Yandell 1996). When the number of models considered is not too
large, as for example in our QTL example, the methods described here enable one to infer
the Bayes factors directly from single-model MCMC runs, which can be easier to implement
than reversible jump MCMC.

Appendix I: Student’s ¢

Student ¢

Copying Bernardo and Smith (1994, page 122),

A —(a+1)/2
St(z|p, A\, @) = ¢ [1 + a(x - M)Q]

where

“TT(a/2)T1/2) \a

_ T((a+1)/2) (A)W.

Multivariate Student ¢

Using the notation of Bernardo and Smith (1994, page 139),

1 - —(a+n)/2
Stn(x|,u,)\,a)=c 1+a(x_:u‘) )\($—M) ’

where

_ T(a+n)/2)
T(a/2) (am)"”

x and p are of dimension n. A is a symmetric, positive-definite n X n matrix, and a > 0.

det (M)

Appendix II: Proof of equation 4

Define
F) =20 (1 — po)? and g(m) = Ly — n)?.
Set

16



It can be easily shown that the maxima of the continuous function a(u) occurs at p* =

to — a/[no(y — po)], and the maximum value of the function is

. 1
a(u)=1+n—0+g(uo)-

Further a(pu) — 1+ 1/ng, as p — 00. The expected value of interest can be written as

. o [ [a(p)]*/* —a/2
b { [w(y|u)]2|y} /[ (W] =L+ f(p)] P dp

where [1 + f(u)]~*/? is proportional to a t-density of the form

St(p|po, no(a —1)/a, 0 — 1) .

Since 1 < a(u) < a(u*), the integral on the right hand side is finite by dominated convergence

theorem when o > 1 and ng > 0.

Appendix III: Proof of Theorem 1

Define oo = h(), write § = («, 8), and set
1

o=B{all  wa -p{ L}

Since both 1/7(y|«) and 1/7(y|#) have common expectation 1/7(y), it suffices to show that

a < b. Expanding b, we have

1
b = //mw(a,ﬁ\y)dﬁda
1
= //Wﬁ(ﬁla,y)p(aly) dBda
= /b(a) 7(aly) da

where

1
bla) = /Ww(ﬁ\a, y) dB.
By contrast,

a= /a(a)w(a|y) do

17



where
_ 1
 [r(yla)]?

Therefore, it is sufficient to prove that a(a) < b(a) for all . Simplifying b(«r), we have

a(a)

1
bla) = /Wﬂ(ﬁ\aay)dﬁ

/ 1 m(yle, B) m(Ble) w(a)
[r(yla, B)?  7(yla) m(e)

L (Bl

m(yla) J 7 (yle, B)

Cancelling one factor 1/7(y|a), we have a(a) < b(a) if

1 </ m(Bl9) 45

m(yla) = ) 7w(yla, B)

This follows by Jensen’s inequality using the distribution 7(f|c). In the event that one or

dp

another of the integrals diverges, a(«) < b(«) must continue to hold.
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